Bayesian Inference of Spatial Organizations of Chromosomes

نویسندگان

  • Ming Hu
  • Ke Deng
  • Zhaohui S. Qin
  • Jesse R. Dixon
  • Siddarth Selvaraj
  • Jennifer Fang
  • Bing Ren
  • Jun S. Liu
چکیده

Knowledge of spatial chromosomal organizations is critical for the study of transcriptional regulation and other nuclear processes in the cell. Recently, chromosome conformation capture (3C) based technologies, such as Hi-C and TCC, have been developed to provide a genome-wide, three-dimensional (3D) view of chromatin organization. Appropriate methods for analyzing these data and fully characterizing the 3D chromosomal structure and its structural variations are still under development. Here we describe a novel Bayesian probabilistic approach, denoted as "Bayesian 3D constructor for Hi-C data" (BACH), to infer the consensus 3D chromosomal structure. In addition, we describe a variant algorithm BACH-MIX to study the structural variations of chromatin in a cell population. Applying BACH and BACH-MIX to a high resolution Hi-C dataset generated from mouse embryonic stem cells, we found that most local genomic regions exhibit homogeneous 3D chromosomal structures. We further constructed a model for the spatial arrangement of chromatin, which reveals structural properties associated with euchromatic and heterochromatic regions in the genome. We observed strong associations between structural properties and several genomic and epigenetic features of the chromosome. Using BACH-MIX, we further found that the structural variations of chromatin are correlated with these genomic and epigenetic features. Our results demonstrate that BACH and BACH-MIX have the potential to provide new insights into the chromosomal architecture of mammalian cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Comparison of two QTL mapping approaches based on Bayesian inference using high-dense SNPs markers

To compare different QTL mapping methods, a population with genotypic and phenotypic data was simulated. In Bayesian approach, all information of markers can be used along with combination of distributions of SNP markers. It is assumed that most of the markers (95%) have minor effects and a few numbers of markers (5%) exert major effects. The simulated population included a basic population of ...

متن کامل

Functional Brain Response to Emotional Muical Stimuli in Depression, Using INLA Approach for Approximate Bayesian Inference

Introduction: One of the vital skills which has an impact on emotional health and well-being is the regulation of emotions. In recent years, the neural basis of this process has been considered widely. One of the powerful tools for eliciting and regulating emotion is music. The Anterior Cingulate Cortex (ACC) is part of the emotional neural circuitry involved in Major Depressive Disorder (MDD)....

متن کامل

Bayesian approach to inference of population structure

Methods of inferring the population structure‎, ‎its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance‎. ‎In this article‎, ‎first‎, ‎motivation and significance of studying the problem of population structure is explained‎. ‎In the next section‎, ‎the applications of inference of p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013